Legnépszerűbb termékek
Nincs találat
Legnépszerűbb cikkek
Nincs találat

Mesterséges intelligencia segítheti a depresszió kiszűrését

Módosítva: 10/9/2024 3 perc AktuálisTudományLélekDepresszióÖsszes cikk
Beszédelemzésen alapuló, a depresszió felismerését segítő, nyelvfüggetlen szoftvert fejlesztenek közösen a Budapesti Műszaki és Gazdaságtudományi Egyetem és a Semmelweis Egyetem szakemberei. A technológia elsősorban az alapellátásban segíthetné a világszerte milliókat érintő mentális betegség szűrését, időt és pénzt spórolva az egészségügynek. Az alkalmazás már elkészült, de élesítéséhez további tesztekre van szükség.

A depresszió népbetegség, az Egészségügyi Világszervezet adatai szerint körülbelül 280 millió ember, a felnőtt lakosság 5%-a lehet érintett.

Egyes előrejelzések szerint 2030-ra ez a mentális probléma róhatja a legnagyobb terhet a világ egészségügyi és gazdasági rendszereire.

semmelweis.hu

A tünetek sokszínűsége, a mentális problémák körüli stigma és az egészségügyet világszinten érintő humánerőforrás-gondok miatt a betegséget nehéz és időigényes diagnosztizálni.

 dr. Hajduska-Dér Bálint„A depresszió-kutatásban éppen ezért régóta próbálnak olyan biomarkereket (objektíven mérhető jellemzők) meghatározni, melyek orvosi beavatkozás nélkül segíthetik a gyorsabb felismerést.
Ilyen lehet a páciensek megváltozott beszéde, melyről mára gyakorlatilag egyetértés van a szakirodalomban” – mondja dr. Hajduska-Dér Bálint, a Semmelweis Egyetem Pszichiátriai és Pszichoterápiás Klinikájának tanérsegéde és egy, a Frontiers in Psychiatry című folyóiratban nemrég megjelent tanulmány első szerzője.

A publikációban egy Budapesti Műszaki és Gazdaságtudományi Egyetemen (BME) fejlesztett, mesterséges intelligencia alapú beszédhangfeldolgozó alkalmazás működését analizálták, mellyel a depresszió felismerését egyszerűsítenék.  

„A depressziós betegek beszéde általában megváltozik: monotonabb és halkabb lesz, többször tartanak szünetet. Ezeket a jellegzetességeket tanítjuk meg a szoftvernek egy speciális módszer (Support Vector Regression) segítségével” – magyarázza dr. Kiss Gábor, a BME Távközlési és Médiainformatikai Tanszékének tudományos munkatársa.

dr. Kiss GáborAz alkalmazást 2012-ben kezdték fejleszteni, miután a BME bekapcsolódott az Európai Űrügynökség egyik kutatásába, melyben a déli-sarki Concordia Űrkutató Állomáson dolgozók pszichés állapotát mérték fel.

Mivel az ottani szakemberek sokszor bezárva, nehezen megközelíthető helyen dolgoznak, miközben télen a nappalok is nagyon rövidek, az általuk rendszeresen felolvasott rövid szövegek alapján a beszédükből próbálták meg kiszűrni pszichés állapotuk változásait. Ebből a projektből nőtte ki magát a Semmelweis Egyetem és a BME együttműködése.

Legutóbbi tanulmányukban arra keresték a választ, hogy a szoftver melyik hagyományosan használt diagnosztikai módszerből nyert adatokkal szűri ki nagyobb pontossággal a depressziót.

A WHO adatai szerint évente 700 000-nél is többen követnek el öngyilkosságot világszerte, a szakemberek szerint a depresszió korai felismerése ezért is égető kérdés.

A betegség felismerésére jelenleg leggyakrabban vagy az úgynevezett Beck Depression Inventory (BDI) vagy a Hamilton Rating Scale for Depression (HAMD) teszteket használják, melyek nem teljesen objektívek.

A BDI teszt önkitöltős, ezért sok múlik azon, hogy maga a páciens hogyan értékeli a saját állapotát: túlozhat vagy éppen elbagatellizálhat tüneteket.

Ezzel diagnosztizálni viszont gyorsabb, és nem kíván feltétlenül orvosi jelenlétet. A HAMD tesztet ezzel szemben az orvos tölti ki a beteg jelenlétében, így olyan tüneteket is megfigyelhet, amit a páciens esetleg nem tart fontosnak –, de ez egy időigényesebb folyamat.

unsplash.com

A kutatáshoz az úgynevezett Magyar Depressziós Beszéd Adatbázis 218 depressziós és egészséges embertől (144 nő, 74 férfi) származó hangmintáit használták fel.

A résztvevőknek „Az északi szél és a nap” című rövid, 10-mondatos mesét kellett felolvasniuk. A szakemberek rögzítették a BDI teszten elért pontszámukat, életkorukat, nemüket, dohányzási- és gyógyszerszedési szokásaikat, illetve, hogy van-e beszédet befolyásoló betegségük. A résztvevők 20%-ánál (43) a HAMD teszten elért pontszámukat is felvették.

A kutatók ezután különböző fizikai jellemzőket vetettek össze minden egyes beszédmintában, köztük a hangspektrumot, a hangdinamikát, a dallamváltozást vagy a beszédritmust.

Az összesített eredményekből kiderült, hogy az alkalmazás 84%-os pontossággal szűrte ki a depressziós betegeket, ha a klinikusok által kitöltött HAMD-teszt pontszámokkal „tanították” a szoftvert, és 76%-os pontossággal mért, ha az önkitöltős BDI-teszt pontszámait vették figyelembe.

„Az eredményeink azt mutatják, hogy az akusztikus biomarkerek segítségével a depresszió hamarabb felismerhető, és egy automatizált döntéshozó szoftver széleskörben is használható lenne, mint kiegészítő diagnosztikai eszköz.
Nemcsak az általános orvosi praxisban, de akár könnyen és olcsón elérhető mobil- vagy webes applikációk formájában is” – mondja dr. Kiss Gábor.
Dr. Hajduska-Dér hozzáteszi: „a depresszió beszédhangon alapuló korai felismerésével lerövidíthető és felgyorsítható lenne a betegút.

unsplash.com

Az érintettek hamarabb juthatnának el pszichiáterhez, ha mondjuk már a háziorvosnál felmerülne, hogy a beteg esetleg depressziós, és emiatt lehetnek fizikai tünetei, például has- vagy hátfájdalma.

A mesterséges intelligencia bevonása ezért közvetve az életminőség javulására is hatással lehet, illetve a kórházban töltött időt és az ellátásra fordított költségeket is csökkenthetné, ezzel tehermentesítve az egészségügyi rendszert.

Az applikáció a betegek állapotának után-követesére és a különböző terápiák hatásosságának mérésére is alkalmas.

A BME-én már tesztelik az alkalmazást más nyelveken is, és szeretnének egy teljesen nyelvfüggetlen applikációt létrehozni. A szoftver egyébként nemcsak depresszió, hanem Parkinson-kór és diszfónia (száj- és gégedaganat vagy egyéb funkcionális rendellenesség) szűrésére is alkalmas.

Beszédelemzésen alapuló, a depresszió felismerését segítő, nyelvfüggetlen szoftvert fejlesztenek közösen a Budapesti Műszaki és Gazdaságtudományi Egyetem és a Semmelweis Egyetem szakemberei.